p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.14C23, (C2xD4):28D4, C4:C8:5C22, D4.7(C2xD4), C4:D8:19C2, C4:C4.335D4, C2.8(D4oD8), (C4xD4):3C22, (C22xD8):9C2, (C2xD8):17C22, C4:1D4:5C22, (C2xC8).16C23, C4.72(C22xD4), D4.2D4:14C2, C4.33(C4:D4), C4:C4.382C23, (C2xC4).245C24, C22:C4.136D4, (C2xSD16):9C22, (C2xD4).52C23, C23.442(C2xD4), C4.4D4:5C22, (C2xQ8).39C23, D4:C4:64C22, C22.11C24:9C2, C22.29C24:8C2, Q8:C4:68C22, C23.24D4:8C2, C23.37D4:8C2, C22.80(C4:D4), (C22xC8).139C22, (C22xC4).975C23, C42.6C22:3C2, C22.505(C22xD4), (C22xD4).340C22, (C2xM4(2)).52C22, C42:C2.100C22, (C2xC8:C22):16C2, C4.155(C2xC4oD4), (C2xC4).465(C2xD4), C2.63(C2xC4:D4), (C2xC4).276(C4oD4), (C2xC4oD4).117C22, SmallGroup(128,1773)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.14C23
G = < a,b,c,d,e | a4=b4=c2=d2=1, e2=a2b2, ab=ba, cac=a-1b2, ad=da, eae-1=ab2, cbc=dbd=b-1, be=eb, dcd=bc, ece-1=a2b2c, de=ed >
Subgroups: 620 in 263 conjugacy classes, 100 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, D4:C4, Q8:C4, C4:C8, C2xC22:C4, C42:C2, C4xD4, C4xD4, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C23.24D4, C23.37D4, C42.6C22, C4:D8, D4.2D4, C22.11C24, C22.29C24, C22xD8, C2xC8:C22, C42.14C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C4:D4, C22xD4, C2xC4oD4, C2xC4:D4, D4oD8, C42.14C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 18 26)(2 22 19 27)(3 23 20 28)(4 24 17 25)(5 30 11 16)(6 31 12 13)(7 32 9 14)(8 29 10 15)
(1 32)(2 13)(3 30)(4 15)(5 23)(6 27)(7 21)(8 25)(9 26)(10 24)(11 28)(12 22)(14 18)(16 20)(17 29)(19 31)
(5 30)(6 31)(7 32)(8 29)(9 14)(10 15)(11 16)(12 13)(21 26)(22 27)(23 28)(24 25)
(1 4 20 19)(2 18 17 3)(5 8 9 12)(6 11 10 7)(13 30 29 14)(15 32 31 16)(21 24 28 27)(22 26 25 23)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,32)(2,13)(3,30)(4,15)(5,23)(6,27)(7,21)(8,25)(9,26)(10,24)(11,28)(12,22)(14,18)(16,20)(17,29)(19,31), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,32)(2,13)(3,30)(4,15)(5,23)(6,27)(7,21)(8,25)(9,26)(10,24)(11,28)(12,22)(14,18)(16,20)(17,29)(19,31), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,18,26),(2,22,19,27),(3,23,20,28),(4,24,17,25),(5,30,11,16),(6,31,12,13),(7,32,9,14),(8,29,10,15)], [(1,32),(2,13),(3,30),(4,15),(5,23),(6,27),(7,21),(8,25),(9,26),(10,24),(11,28),(12,22),(14,18),(16,20),(17,29),(19,31)], [(5,30),(6,31),(7,32),(8,29),(9,14),(10,15),(11,16),(12,13),(21,26),(22,27),(23,28),(24,25)], [(1,4,20,19),(2,18,17,3),(5,8,9,12),(6,11,10,7),(13,30,29,14),(15,32,31,16),(21,24,28,27),(22,26,25,23)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4oD4 | D4oD8 |
kernel | C42.14C23 | C23.24D4 | C23.37D4 | C42.6C22 | C4:D8 | D4.2D4 | C22.11C24 | C22.29C24 | C22xD8 | C2xC8:C22 | C22:C4 | C4:C4 | C2xD4 | C2xC4 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of C42.14C23 ►in GL6(F17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 16 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 16 |
0 | 0 | 13 | 13 | 1 | 0 |
13 | 11 | 0 | 0 | 0 | 0 |
11 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 0 |
0 | 0 | 14 | 11 | 0 | 0 |
0 | 0 | 0 | 12 | 3 | 14 |
0 | 0 | 5 | 5 | 14 | 14 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 16 |
0 | 0 | 0 | 13 | 16 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 16 | 0 | 13 | 0 |
0 | 0 | 1 | 1 | 4 | 0 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,15,1,13,4,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,13,0,0,2,16,4,13,0,0,0,0,0,1,0,0,0,0,16,0],[13,11,0,0,0,0,11,4,0,0,0,0,0,0,6,14,0,5,0,0,6,11,12,5,0,0,0,0,3,14,0,0,0,0,14,14],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,2,16,4,13,0,0,0,0,0,16,0,0,0,0,16,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,4,0,16,1,0,0,0,0,0,1,0,0,15,1,13,4,0,0,0,1,0,0] >;
C42.14C23 in GAP, Magma, Sage, TeX
C_4^2._{14}C_2^3
% in TeX
G:=Group("C4^2.14C2^3");
// GroupNames label
G:=SmallGroup(128,1773);
// by ID
G=gap.SmallGroup(128,1773);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,1018,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=1,e^2=a^2*b^2,a*b=b*a,c*a*c=a^-1*b^2,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*b^2*c,d*e=e*d>;
// generators/relations