Copied to
clipboard

G = C42.14C23order 128 = 27

14th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.14C23, (C2xD4):28D4, C4:C8:5C22, D4.7(C2xD4), C4:D8:19C2, C4:C4.335D4, C2.8(D4oD8), (C4xD4):3C22, (C22xD8):9C2, (C2xD8):17C22, C4:1D4:5C22, (C2xC8).16C23, C4.72(C22xD4), D4.2D4:14C2, C4.33(C4:D4), C4:C4.382C23, (C2xC4).245C24, C22:C4.136D4, (C2xSD16):9C22, (C2xD4).52C23, C23.442(C2xD4), C4.4D4:5C22, (C2xQ8).39C23, D4:C4:64C22, C22.11C24:9C2, C22.29C24:8C2, Q8:C4:68C22, C23.24D4:8C2, C23.37D4:8C2, C22.80(C4:D4), (C22xC8).139C22, (C22xC4).975C23, C42.6C22:3C2, C22.505(C22xD4), (C22xD4).340C22, (C2xM4(2)).52C22, C42:C2.100C22, (C2xC8:C22):16C2, C4.155(C2xC4oD4), (C2xC4).465(C2xD4), C2.63(C2xC4:D4), (C2xC4).276(C4oD4), (C2xC4oD4).117C22, SmallGroup(128,1773)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C42.14C23
C1C2C4C2xC4C22xC4C22xD4C22.11C24 — C42.14C23
C1C2C2xC4 — C42.14C23
C1C22C42:C2 — C42.14C23
C1C2C2C2xC4 — C42.14C23

Generators and relations for C42.14C23
 G = < a,b,c,d,e | a4=b4=c2=d2=1, e2=a2b2, ab=ba, cac=a-1b2, ad=da, eae-1=ab2, cbc=dbd=b-1, be=eb, dcd=bc, ece-1=a2b2c, de=ed >

Subgroups: 620 in 263 conjugacy classes, 100 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, D4:C4, Q8:C4, C4:C8, C2xC22:C4, C42:C2, C4xD4, C4xD4, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C23.24D4, C23.37D4, C42.6C22, C4:D8, D4.2D4, C22.11C24, C22.29C24, C22xD8, C2xC8:C22, C42.14C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C4:D4, C22xD4, C2xC4oD4, C2xC4:D4, D4oD8, C42.14C23

Smallest permutation representation of C42.14C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 18 26)(2 22 19 27)(3 23 20 28)(4 24 17 25)(5 30 11 16)(6 31 12 13)(7 32 9 14)(8 29 10 15)
(1 32)(2 13)(3 30)(4 15)(5 23)(6 27)(7 21)(8 25)(9 26)(10 24)(11 28)(12 22)(14 18)(16 20)(17 29)(19 31)
(5 30)(6 31)(7 32)(8 29)(9 14)(10 15)(11 16)(12 13)(21 26)(22 27)(23 28)(24 25)
(1 4 20 19)(2 18 17 3)(5 8 9 12)(6 11 10 7)(13 30 29 14)(15 32 31 16)(21 24 28 27)(22 26 25 23)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,32)(2,13)(3,30)(4,15)(5,23)(6,27)(7,21)(8,25)(9,26)(10,24)(11,28)(12,22)(14,18)(16,20)(17,29)(19,31), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,32)(2,13)(3,30)(4,15)(5,23)(6,27)(7,21)(8,25)(9,26)(10,24)(11,28)(12,22)(14,18)(16,20)(17,29)(19,31), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,18,26),(2,22,19,27),(3,23,20,28),(4,24,17,25),(5,30,11,16),(6,31,12,13),(7,32,9,14),(8,29,10,15)], [(1,32),(2,13),(3,30),(4,15),(5,23),(6,27),(7,21),(8,25),(9,26),(10,24),(11,28),(12,22),(14,18),(16,20),(17,29),(19,31)], [(5,30),(6,31),(7,32),(8,29),(9,14),(10,15),(11,16),(12,13),(21,26),(22,27),(23,28),(24,25)], [(1,4,20,19),(2,18,17,3),(5,8,9,12),(6,11,10,7),(13,30,29,14),(15,32,31,16),(21,24,28,27),(22,26,25,23)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L4A4B4C4D4E···4L4M8A8B8C8D8E8F
order122222222222244444···44888888
size111122444488822224···48444488

32 irreducible representations

dim111111111122224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4C4oD4D4oD8
kernelC42.14C23C23.24D4C23.37D4C42.6C22C4:D8D4.2D4C22.11C24C22.29C24C22xD8C2xC8:C22C22:C4C4:C4C2xD4C2xC4C2
# reps111144111122444

Matrix representation of C42.14C23 in GL6(F17)

0160000
100000
0040150
000011
0000130
0001640
,
100000
010000
001200
00161600
0004016
00131310
,
13110000
1140000
006600
00141100
00012314
00551414
,
1600000
0160000
001200
0001600
0004016
00013160
,
0160000
100000
0040150
000011
00160130
001140

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,15,1,13,4,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,13,0,0,2,16,4,13,0,0,0,0,0,1,0,0,0,0,16,0],[13,11,0,0,0,0,11,4,0,0,0,0,0,0,6,14,0,5,0,0,6,11,12,5,0,0,0,0,3,14,0,0,0,0,14,14],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,2,16,4,13,0,0,0,0,0,16,0,0,0,0,16,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,4,0,16,1,0,0,0,0,0,1,0,0,15,1,13,4,0,0,0,1,0,0] >;

C42.14C23 in GAP, Magma, Sage, TeX

C_4^2._{14}C_2^3
% in TeX

G:=Group("C4^2.14C2^3");
// GroupNames label

G:=SmallGroup(128,1773);
// by ID

G=gap.SmallGroup(128,1773);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,1018,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=1,e^2=a^2*b^2,a*b=b*a,c*a*c=a^-1*b^2,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*b^2*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<